Methodology for assessing and reducing uncertainty in the problems of automotive technical expertise of traffic accidents
DOI:
https://doi.org/10.31649/2413-4503-2020-11-1-71-78Keywords:
stochastic processes, fuzzy values, compositional uncertainty, normalized entropy, automotive technical expertise, traffic accidentAbstract
When solving the problems of automotive technical expertise in road traffic accidents (RTAs), decisions are made in conditions of incomplete information, that is, in conditions of uncertainty. In the decision-making process, different types of uncertainty arise, depending on the reasons for its occurrence: quantitative, informational, cost-based, professional, restrictive, and the external environment. In addition, uncertainty can be stochastic or fuzzy. The lack of a unified methodological approach to assessing and minimizing the impact of uncertainty on the results of an autotechnical examination of an accident can lead to a significant error in determining the parameters under study.
The aim of the work is to generalize and develop existing approaches to assessing the uncertainty of methodological support of automotive technical expertise and minimize the subjectivity of the formation of expert conclusions in the process of establishing the circumstances of emergencies.
The structure of the formation of uncertainty and methods for its assessment in solving the problems of automotive technical expertise of accidents are considered. It is shown that the decision-making process in the automotive technical expertise of road accidents should be considered not only as deterministic, but also as a stochastic and fuzzy process that requires the use of the synthesis of deterministic, probabilistic, regression and neuro-fuzzy models to take into account most of the factors that influence to reduce uncertainty in the formation of expert opinions. It is proposed to evaluate the uncertainty of the methodological support of the automotive technical expertise of traffic accidents by the indicators of generalized informational entropy, which is not a property of the adopted system of automotive technical expertise of traffic accidents, but depends on the way this system is described. A method of normalized entropy is developed, which, unlike the existing ones, is a universal tool for assessing compositional uncertainty (composition of stochastic and fuzzy uncertainty), characteristic for this type of problem. It is shown that taking stochastic and fuzzy uncertainties into account allows us to narrow the range of possible solutions when conducting an examination by 20%, and compared with the deterministic approach, the subjectivity of forming expert conclusions in establishing the circumstances of emergencies decreases by 46-48%.
References
А. А. Кашканов, Технології підвищення ефективності автотехнічної експертизи дорожньо-транспортних пригод : монографія [Електронний ресурс]. Вінниця : ВНТУ, 2018. 160 с. Один електрон. опт. диск (CD-ROM); 12 см. Назва з тит. екрану. ISBN 978-966-641-740-7.
Г. М. Гнатієнко, В. Є. Снитюк, Експертні технології прийняття рішень. Київ: Маклаут, 2008. 444 с.
Ю. П. Зайченко, Нечеткие модели и методы в интеллектуальных системах. Киев: Слово, 2008. 344 с.
M. Brach, R. Brach, Vehicle Accident Analysis and Reconstruction Methods. SAE International, 2011. 442 p.
R. Brach, P. Dunn, Uncertainty analysis for forensic science. Lawyers and Judges Publishing Company Inc, USA, 2003.
L. D. Metz, L. G. Metz, Sensitivity of accident reconstruction calculations. SAE Technical Paper 980375, 1998.
M. R. Brach, M. Guzek, Z. Lozia, Uncertainty of road accident reconstruction computations, [in:] Proceedings of the 16th Annual EVU Congress, Institute of Forensic Research Publisher, Kraków 2007, P. 35–50.
W. Bartlett, A. Fonda, Evaluating uncertainty in accident reconstruction with finite differences, SAE Technical Paper No. 2003-01-0489, Warrendale, PA, 2003, doi:10.4271/2003-01-0489.
G. A. Davis, Bayesian reconstruction of traffic accidents, Law, Probability and Risk 2 (2), 2003. 69– 89, doi: 10.1093/lpr/2.2.69.
W. Wach, “Calculation reliability in vehicle accident reconstruction,” Forensic Science International, Volume 263, P. 27–38, 2016, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2016.03.038.
S. Kimbrough, Determining the relative likelihoods of competing scenarios of events leading to an accident, Special Publication Accident Reconstruction SP-1873 (2004), SAE Technical Paper No. 2004-01-1222, Warrendale, PA, 2004, doi:10.4271/2004-01-1222.
K. Sobczyk, Methods of statistic dynamics. PWN, Warsaw, 1973. (in the Polish language).
A. Moser, H. Steffan, A. Spek, W. Makkinga, Application of the Monte Carlo methods for stability analysis within the accident reconstruction software PC- Crash, SAE Technical Paper No. 2003-01-0488, Warrendale, PA, 2003. doi:10.4271/2003-01-0488.
W. Wach, J. Unarski, Uncertainty of calculation results in vehicle collision analysis, Forensic Sci. Int. 167 (2), 2007. P. 181–188, doi:10.1016/j.forsciint.2006.06.061.
W. Bartlett, W. Wright, O. Masory, R. Brach, A. Baxter, B. Schmidt, F. Navin, T. Stanard, Evaluating the uncertainty in various measurement tasks common to accident reconstruction, SAE Technical Paper No. 2002-01-0546, Warrendale, PA, 2002, doi:10.4271/2002-01-0546.
T. Zou, M. Cai, R. Du, J. Liu, Analyzing the uncertainty of simulation results in accident reconstruction with Response Surface Methodology, Forensic Sci. Int. 216 (2012) 49–60, doi: 10.1016/j.forsciint.2011.08.016.
J. W. Muttart, Development and Evaluation of Driver Response Time Predictors Based upon Meta Analysis, SAE Technical Paper 2003-01-0885, Warrendale, PA, 2003. doi: 10.4271/2003-01-0885.
А. А. Кашканов, Г. Г. Кашканова, О. Г. Грисюк, «Оцінювання невизначеності вимірювання швидкості автомобіля при автотехнiчнiй експертизі дорожньо-транспортних пригод,» Вісник Житомирського державного технологічного університету. Серія: Технічні науки, № 2 (77), с. 85–93. 2016.
O. Saraiev and Y. Gorb, A Mathematical Model of the Braking Dynamics of a Car, SAE Technical Paper 2018-01-1893, 2018.
А. А. Кашканов, О. В. Гуцалюк, «Вплив невизначеності даних на результати оцінювання гальмових властивостей автомобілів при експертизі ДТП,» Міжвузівський збірник «Наукові нотатки». Луцьк: ЛНТУ, вип. 37, с. 134–139. 2012.
Є. Л. Старіков, «Вдосконалення методів дослідження маневру транспортного засобу,» Криміналістичний вісник, № 2 (20), с. 201–209. 2013.
R. M. Brach, Tire models for vehicle dynamic simulation and accident reconstruction, SAE Technical Paper No. 2009-01-0102, Warrendale, PA, 2009. doi:10.4271/2009-01-0102.
V. Bogdanovic, N. Milutinovic, S. Kostic, N. Ruskic, “Research of the influences of input parameters on the result of vehicles collision simulation,” Promet Traffic Transp, no. 24, p. 243–251. 2004. DOI: https://doi.org/10.7307/ptt.v24i3.317.
Guzek M., Lozia Z. Possible errors occurring during accident reconstruction based on car 'black box' records, SAE Transactions 111 (6), 2002. P. 677–696 (also: SAE Technical Paper No. 2002-01-0549), doi:10.4271/2002-01-0549.
G. A. Davis, “Crash reconstruction and crash modification factors,” Accident Analysis and Prevention, no. 62, p. 294–302. 2014. doi:10.1016/j.aap.2013.09.027.
Науково-методичні рекомендації з питань підготовки та призначення судових експертиз та експертних досліджень (у редакції наказу Міністерства юстиції України від 26.12.2012 № 1950/5 зі змінами № 1350/5 від 27.07.2015).
В. М. Дубовой, О. О. Ковалюк, Моделі прийняття рішень в управлінні розподіленими динамічними системами. Вінниця: Універсум-Вінниця, 2008. 185 с.
В. Є. Снитюк, Прогнозування. Моделі. Методи. Алгоритми. К.: Маклаут, 2008. 364 с.
Дж. Нейман, О. Моргенштерн. Теория игр и экономическое поведение. М.: Наука, 1970. 707 с.
О. В. Глонь, В. М. Дубовой, Моделювання систем керування в умовах невизначеності. Вінниця: Універсум-Вінниця, 2004.
А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа. М.: Физматиз, 1968.
C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, p. 379–423. 1948.
R.Y. Rubinstein, “Optimization of Computer Simulation Models with Rare Events,” European Journal of Operations Research, vol. 99, p. 89–112. 1997.
Downloads
-
PDF (Українська)
Downloads: 274