Innovations in observational navigation techniques for precise ship positioning

Authors

DOI:

https://doi.org/10.63341/vjmet/2.2024.142

Keywords:

bearings, radar data, transportation, combined use, global systems

Abstract

The purpose of the study was to enhance methodologies for determining ship position, thereby increasing the accuracy and reliability of navigation. The study involves a comparative analysis of current methods for establishing navigational positions, specifically using bearing and radar data, with an assessment of the accuracy, efficiency, and reliability of each approach. Findings indicated that the precision and effectiveness of each method are heavily influenced by navigational conditions, including weather, geographical location, and vessel type. Although conventional methods remain applicable, they present limitations that may result in substantial positioning errors. In response to these limitations, new approaches are developed and tested, notably through the combined use of direction finders and radar data to improve accuracy. A comparative analysis of these innovative methods against conventional practices demonstrates enhanced accuracy and reliability under variable navigational conditions. These findings inform recommendations for refining ship positioning techniques to enhance navigational safety and optimise maritime transport operations. The recommendations emphasise advancing the use of modern technologies, such as global navigation systems and the integration of multiple data sources, to improve the dependability of navigation solutions. In addition, the adoption of automated systems for analysing and processing navigational data is advised to support timely decision-making in challenging navigational environments

Author Biographies

Yevhenii Tabachkivskyi, National University “Odesa Maritime Academy”

Master

Mykhailo Bushlia, National University “Odesa Maritime Academy”

Master

References

Al Bitar, N., & Gavrilov, A. (2021). A new method for compensating the errors of integrated navigation systems using artificial neural networks. Measurement, 168, article number 108391. doi: 10.1016/j.measurement.2020.108391.

Alizadeh, D., Alesheikh, A.A., & Sharif, M. (2021). Prediction of vessels locations and maritime traffic using similarity measurement of trajectory. Annals of GIS, 27(2), 151-162. doi: 10.1080/19475683.2020.1840434.

Arafat, M.Y., Alam, M.M., & Moh, S. (2023). Vision-based navigation techniques for unmanned aerial vehicles: Review and challenges. Drones, 7(2), article number 89. doi: 10.3390/drones7020089.

Asiyabi, R.M., Ghorbanian, A., Tameh, S.N., Amani, M., Jin, S., & Mohammadzadeh, A. (2023). Synthetic aperture radar (SAR) for ocean: A review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 9106-9138 doi: 10.1109/JSTARS.2023.3310363.

Bartel, B. (2024). Report UNAVCO resources: Permanent GPS/GNSS stations. Retrieved from https://surl.li/wbqenb.

Blindheim, S., & Johansen, T.A. (2021). Electronic navigational charts for visualization, simulation, and autonomous ship control. IEEE Access, 10, 3716-3737. doi: 10.1109/ACCESS.2021.3139767.

Comber, A., et al. (2023). A route map for successful applications of geographically weighted regression. Geographical Analysis, 55(1), 155-178. doi: 10.1111/gean.12316.

De Vos, J., Hekkenberg, R.G., & Banda, O.A.V. (2021). The impact of autonomous ships on safety at sea – A statistical analysis. Reliability Engineering & System Safety, 210, 107558. doi: 10.1016/j.ress.2021.107558.

Elsanhoury, M., Makela, P., Koljonen, J., Valisuo, P., Shamsuzzoha, A., Mantere, T., Elmusrati, M., & Kuusniemi, H. (2022). Precision positioning for smart logistics using ultra-wideband technology-based indoor navigation: A review. IEEE Access, 10, 44413-44445. doi: 10.1109/ACCESS.2022.3169267.

El-Sheimy, N., & Li, Y. (2021). Indoor navigation: State of the art and future trends. Satellite Navigation, 2, article number 7. doi: 10.1186/s43020-021-00041-3.

Hoang, A.T., Foley, A.M., Nižetić, S., Huang, Z., Ong, H.C., Ölçer, A.I., Pham, V.V., & Nguyen, X.P. (2022). Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. Journal of Cleaner Production, 355, article number 131772. doi: 10.1016/j.jclepro.2022.131772.

Hong, Z., Petillot, Y., Wallace, A., & Wang, S. (2022). RadarSLAM: A robust simultaneous localization and mapping system for all weather conditions. International Journal of Robotics Research, 41(5), 519-542. doi: 10.1177/02783649221080483.

Huang, L., Liu, C., Wang, H., Zhu, Q., Zhang, L., Han, J., Zhang, Y., & Wang, Q. (2022). Experimental analysis of atmospheric ducts and navigation radar over-the-horizon detection. Remote Sensing, 14(11), article number 2588. doi: 10.3390/rs14112588.

Karagiannidis, P., & Themelis, N. (2021). Data-driven modelling of ship propulsion and the effect of data pre-processing on the prediction of ship fuel consumption and speed loss. Ocean Engineering, 222, article number 108616. doi: 10.1016/j.oceaneng.2021.108616.

Kim, T.E., Perera, L.P., Sollid, M.P., Batalden, B.M., & Sydnes, A.K. (2022). Safety challenges related to autonomous ships in mixed navigational environments. WMU Journal of Maritime Affairs, 21, 141-159. doi: 10.1007/s13437-022- 00277-z.

Li, D., Xu, J., He, H., & Wu, M. (2021). An underwater integrated navigation algorithm to deal with DVL malfunctions based on deep learning. IEEE Access, 9, 82010-82020. doi: 10.1109/ACCESS.2021.3083493.

Liu, B., Li, Z. C., Sheng, D., & Wang, Y. (2021). Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel. Transportation Research Part B: Methodological, 143, 23-47. doi: 10.1016/j. trb.2020.10.010.

Liu, C., Chu, X., Wu, W., Li, S., He, Z., Zheng, M., Zhou, H., & Li, Z. (2022). Human-machine cooperation research for navigation of maritime autonomous surface ships: A review and consideration. Ocean Engineering, 246, article number 110555. doi: 10.1016/j.oceaneng.2022.110555.

Lu, L., Li, G., Xing, P., Gao, H., & Song, Y. (2023). A review of stochastic finite element and nonparametric modelling for ship propulsion shaft dynamic alignment. Ocean Engineering, 286(Part 2), article number 115656. doi: 10.1016/j. oceaneng.2023.115656.

Martelli, M., Virdis, A., Gotta, A., Cassarà, P., & Di Summa, M. (2021). An outlook on the future marine traffic management system for autonomous ships. IEEE Access, 9, 157316-157328. doi: 10.1109/ACCESS.2021.3130741.

Mazurek, G., Kulpa, K., Malanowski, M., & Droszcz, A. (2021). Experimental seaborne passive radar. Sensors, 21(6), article number 2171. doi: 10.3390/s21062171.

Melnyk, O., & Onyshchenko, S. (2021). Ensuring safety of navigation in the aspect of reducing environmental impact. In Z. Hu, S. Petoukhov, F. Yanovsky & M. He (Eds.), International symposium on engineering and manufacturing (pp. 95-103). Cham: Springer. doi: 10.1007/978-3-031-03877-8_9.

Naus, K., Wąż, M., Szymak, P., Gucma, L., & Gucma, M. (2021). Assessment of ship position estimation accuracy based on radar navigation mark echoes identified in an Electronic Navigational Chart. Measurement, 169, article number 108630. doi: 10.1016/j.measurement.2020.108630.

Plaza-Hernández, M., Gil-González, A.B., Rodríguez-González, S., Prieto-Tejedor, J., & Corchado-Rodríguez, J.M. (2021). Integration of IoT technologies in the maritime industry. In S. Rodríguez González (Ed.), Distributed computing and artificial intelligence, special sessions, 17th international conference (pp. 107-115). Cham: Springer. doi: 10.1007/978-3-030-53829-3_10.

Rodriguez-Alvarez, N., Munoz-Martin, J.F., & Morris, M. (2023). Latest advances in the global navigation satellite system – reflectometry (GNSS-R) field. Remote Sensing, 15(8), article number 2157. doi: 10.3390/rs15082157.

Shajahan, N., Barclay, D.R., & Lin, Y.T. (2024). Exploiting environmental asymmetry for vessel localization from the vertical coherence of radiated noise. Journal of the Acoustical Society of America, 156(1), 560-572. doi: 10.1121/10.0028003.

Tijan, E., Jović, M., Aksentijević, S., & Pucihar, A. (2021). Digital transformation in the maritime transport sector. Technological Forecasting and Social Change, 170, article number 120879. doi: 10.1016/j.techfore.2021.120879.

Wiśnicki, B., Wagner, N., & Wołejsza, P. (2024). Critical areas for successful adoption of technological innovations in sea shipping – the autonomous ship case study. Innovation: European Journal of Social Science Research, 37(2), 582-608. doi: 10.1080/13511610.2021.1937071.

Wu, B., Yip, T.L., Yan, X., & Soares, C.G. (2022). Review of techniques and challenges of human and organizational factors analysis in maritime transportation. Reliability Engineering & System Safety, 219, article number 108249. doi: 10.1016/j.ress.2021.108249.

Zeng, Y., Shen, S., & Xu, Z. (2023). Water surface acoustic wave detection by a millimeter wave radar. Remote Sensing, 15(16), article number 4022. doi: 10.3390/rs15164022.

Zhang, X., Wang, C., Jiang, L., An, L., & Yang, R. (2021). Collision-avoidance navigation systems for Maritime Autonomous Surface Ships: A state of the art survey. Ocean Engineering, 235, article number 109380. doi: 10.1016/j. oceaneng.2021.109380.

Zhu, W., Wang, H., & Zhang, X. (2021). Synergy evaluation model of container multimodal transport based

Downloads

Abstract views: 50

Published

2025-10-28

How to Cite

[1]
Y. Tabachkivskyi and M. Bushlia, “Innovations in observational navigation techniques for precise ship positioning”, ВМТ, vol. 20, no. 2, pp. 142–152, Oct. 2025.

Issue

Section

Articles

Metrics

Downloads

Download data is not yet available.