The reduction of energy on overcoming kinematic termination in transmission of fully drive traffic and vehicle means by regulating tire pressure is reduction
DOI:
https://doi.org/10.31649/2413-4503-2019-10-2-89-94Keywords:
energy efficiency, transmission of traction transport, kinematic mismatch, tire pressure, pressure control systemAbstract
The article discusses the existing methods for eliminating kinematic mismatch in the trolley of the middle and rear driving axles of four-wheel drive traction vehicles (TTS). It has been established that the most rational way to minimize kinematic mismatch is to install an automatic pressure control system in the tires of an all-wheel drive TTC. A variant of the algorithm for controlling the air pressure in the tires of an all-wheel drive TTS during its operation is proposed to reduce kinematic mismatch. The proposed algorithm for controlling the pressure in the TTC tires allows you to adjust the pressure in the tires of all-wheel drive TTS based on the degree of congestion of the car, as well as when changing the type of tires installed on the car, which minimizes the presence of kinematic mismatch in its transmission. The use of an automatic pressure control system in TTS tires allows to increase its energy efficiency during operation. The methods for minimizing the kinematic mismatch are not universal and cannot be applied due to the need to make significant design and technological changes. In terms of overhaul, the most appropriate is the introduction of a system that would minimize the kinematic mismatch in the transmission, without changing its design, by changing the pressure in the tires of the car until the rolling radii are aligned. This system should include an ECU, as well as pressure sensors in each wheel and a torque sensor that reports which of the axles is braking. This system is designed to maintain the same pressure in the tires of the middle and rear axles of the car. This subsystem receives the tire pressure indicators from the pressure sensors at the input, converts the obtained parameters into numerical digitized values, analyzes them according to a predetermined algorithm, and issues control actions to the tire inflation unit. The subsystem stores a sign of equal pressure in the tires of both axles. The subsystem operation algorithms for the front and rear axles are similar.
References
Н. Н. Потапов, «Влияние смещения центра тяжести автомобиля при изменении нагрузки на радиусы колес,» у Міжвідомчий науковий збірник. Механізація та електрифікація сільського господарства. Глеваха, Украина: 2014, т. 2, вип. 99. с. 58-67.
В. В. Ванцевич, «Повышение тяговых свойств полноприводных колесных тракторов,» в Надежность мелиоративных машин. Горки, Россия: 1987, с. 56-59.
H. A. Ульянов, Колесные движители строительных и дорожных машин. Теория и расчет. М., Россия: Машиностроение, 1982. 279 с.
Е. А. Чудаков, Теория автомобиля. М., Россия: Машгиз, 1950. 343 с.
Е. А. Чудаков, Циркуляция паразитной мощности в механизмах бездифференциального автомобиля. М., Россия: Машгиз, 1950. 79 с.
Г. В. Зимелев, Теория автомобиля. М., Россия: Машгиз, 1959. 312 с.
П. В. Аксенов, Многоосные автомобили. 2-е изд., перераб. и доп. М., Россия: Машиностроение, 1989. 280 с.
А. А. Романченко, Трехосные автомобили «Урал». М., Россия: Транспорт, 1978. 312 с.
А. Е. Кузнецов, Руководство по эксплуатации, техническому обслуживанию и ремонту КамАЗ с колесной формулой 6×4 и 6×6. М., Россия: Третий Рим, 2018. 268 с.
Downloads
-
PDF (Русский)
Downloads: 185